6. New Mechanistic Proposal for Some Heptamolybdate-Ion-Catalyzed Isomerizations

by Branimir Klaić, Zlata Raza, Mauricio Sanković, and Vitomir Šunjić*

Rudjer Bošković Institute, Department of Organic Chemistry and Biochemistry, P.O.B. 1016, 41001 Zagreb, Yugoslavia

(21 **.VII.** 86)

Heptamolybdate-ion(HM)-catalyzed C(2) epimerization of D-glucose and racemization of D-glyceraldehyde proceed with comparable rates and activation parameters; HM catalyzes the isomerization of glucal and galactal triacetates as well. For all of the above transformations, a common, new mechanism is proposed that invokes stabilization of 3-oxa-allylic cation species by the central **Mo(V1)** atom.

1. Introduction. $-$ The catalytic effect of molybdate ions on the epimerization at $C(2)$ of various monosaccharides was observed by *Bilik et al.* [1 J [2] and subsequently studied in more detail [3-61.

Heptamolybdate ion (HM) is thermodynamically the most preferred species among the numerous polyanions of molybdic acid present in an aqueous solution [7] [8]. It is particularly favoured at lower pH values, where an enhanced rate of the molybdate-ioncatalyzed epimerization was observed. This suggests that the heptamolybdate ion could be the actual catalytic species, irrespective of the initial anion used.

Bilik et al. [4] have demonstrated that tritium does not exchange with solvent H-atoms during the molybdate-ion-catalyzed epimerization of D-[1⁻³H]glucose to D-[2⁻³H]mannose, thus eliminating the traditional mechanism *via* a free ene-l,2-diol as the intermediate. *Barker's* group performed a nice "C-NMR study and have surprisingly found [6] that C(2) epimerization of aldoses coinvolves C(1) \rightleftharpoons C(2) transposition, and the vicinal-proton-exchange mechanism **[4]** [5] operates only to a limited extent. Both authors explained the catalytic effect of the molybdate ion by a steric strain imposed on an aldopyranose ring upon complexation [6] [9].

2. Results and Discussion. – On the basis of our preliminary data (see the *Table*), we believe that αx_0 -complexation and steric strain cannot be the only driving force for $C(1) \rightleftharpoons C(2)$ transposition and H-shift between $C(1)$ and $C(2)$ of complexed monosaccharides. Moreover, the earlier mechanistic considerations [3-6] [9] have not, in our opinion, addressed adequately the catalytic role of the central Mo-atom of heptamolybdate. While waiting for the data on the electronic structure of heptamolybdate'), we have undertaken

 Γ ¹) The crystal structure parameters for HM ion have repeatedly been determined by X-ray single-crystal analysis **[1&12].** To **our** best knowledge, however, no spectroscopic or quantum-chemical data on orbital energies or hybridization states in HM are published.

kinetic and preparative (equilibrium) experiments to shed more light on the mechanism of this important transformation²).

Rate measurements for the epimerization of D -glucose (1) into D -mannose (2) and for the racemization of 3, both catalyzed by heptamolybdate ion under otherwise analogous conditions (*Table, Runs 1–8*), revealed comparable kinetic and thermodynamic parameters for these processes. A somewhat lower activation energy for epimerization of 1 either indicates the influence of steric strain as has been proposed by Bilik et al. and Barker and coworkers, or it is the consequence of a higher ratio of a nonhydrated to a hydrated

Table. Rates and Thermodynamic Parameters of Heptamolybdate-Catalyzed D-Glucose (1) Epimerization and D-Glyceraldehyde (3) Racemization

Run	Com- pound	Temp. $\mathfrak{k}^* \pm 0.1$ °1	Conc. of 1 or 3	Conc. of HM	рH	$k_{\text{obs}} \times 10^3$ $\{min^{-1}\}^b$)	$\sqrt{4G_{298.16}}$ [kJ/mol]	ΔH^{\neq} [kJ/mol]
1		70.2	0.1 _M	3.6×10^{-2} M	5.5	12.9 ± 0.6		
\overline{c}		75.1	0.1M	3.6×10^{-2} M	5.5	23.3 ± 0.5	107.0 ± 4.1	97.6 ± 3.1
$\overline{\mathbf{3}}$	1	80.4	0.1M	3.6×10^{-2} M	5.5	37.1 ± 0.3		
$\overline{4}$	1	85.5	0.1M	3.6×10^{-2} M	5.5	59.1 ± 3.2		
5	3	75.2	$0.1Ma$)	3.6×10^{-2} M	5.5	0.29 ± 0.02		
6	3	80.0	0.1M	3.6×10^{-2} M	5.5	0.64 ± 0.04		
$\overline{7}$	3	84.3	0.1M	3.6×10^{-2} M	5.5	0.82 ± 0.03	118.6	107.3 ± 13.7
8	3	90.2	0.1 _M	3.6×10^{-2} M	5.5	1.49 ± 0.06		
9		85.0	62.5%	5.0×10^{-4} M ^c)	2.5	13.2 ± 0.6		
10 [°]		100.5	62.5%	5.0×10^{-4} M	2.5	20.4 ± 1.8		102.9 ± 13.3 49.7 ± 10.4
II	1	120.5	62.5%	5.0×10^{-4} M	2.5	63.2 ± 1.4		
12		103.0	62.5%	3.6×10^{-2} M ^d)	5.5	19.5 ± 0.25		
13	1	113.5	62.5%	3.6×10^{-2} M	5.5	30.05 ± 2.0		

a) At this concentration, only the monomeric hydrated form of 3 is present [15].

 b_1 The ratio of epimers (1 and 2) was determined by HPLC. The separation was performed on a Bio Rad's Aminex HPX-87C monosaccharides analysis column (300 \times 7.8 mm) equipped with a thermostated jacket, with H_2O at 85.0° as the eluant. The compounds were detected with a refractive index detector connected to an integrator. The rate of racemization of 3 was determined with a Perkin-Elmer M141 polarimeter equipped with thermostated cells. The presence of dihydroxy-acetone was controlled by ¹³C-NMR, and was found to be ca. 10% after 24 h at 80°, in accordance with an earlier finding of Königstein for D , L-glyceraldehyde [16].

S) In these runs, the concentration of the catalyst and of 1, and the pH were those usually applied in the industrial scale isomerization process [13].

 \mathbf{d}_1 The catalyst was anhydro-heptamolybdate.

 2 This process is used for the industrial-scale production of D-mannose and subsequently for D-mannitol [13] $[14]$.

carbonylic (acyclic) form in a D-glucose solution than in a D-glyceraldehyde solution, at higher temperatures³).

We have also found that heptamolybdate catalyzes the isomerization of tri-O-acetyl-D-glucal **(4)** and tri-0 -acetyl-D-galactal *(5)* into pseudo-glycals **6** and **7,** respectively at 110° in Ac₂O. The equilibrium $4 \rightleftharpoons 6$ and $5 \rightleftharpoons 7$ was established after approximately 10–15 min, with the reactant to product ratio of approximately 35:65. We noticed that this reaction was accompanied by an interesting and reversible thermochromic effect; at *ca.* 110° , the reaction solution became slightly yellow, but changed to green on cooling. Following this observation, we prepared a deep-blue crystalline material from ammonium heptamolybdate by a brief heating in Ac,O at reflux temperature, which we named 'anhydro-heptamolybdate' in the absence of the exact structural data⁴). This new compound catalyzed the isomerization of **1** with approximately the same rate as the heptamolybdate *(Table, Runs* 12 and *13),* without the loss of its characteristic blue colour.

On the basis of the results outlined, we believe that the driving force for the $C(2)$ epimerization is not simply the 0x0-complexation of a monosaccharide molecule by molybdate ions [5] [6], but also involves a $d-\pi$ interaction between the central Mo(VI) atom of the heptamolybdate ion and the carbonylic (acyclic) form of the monosaccharide. This interaction could enable a H-shift between $C(1)$ and $C(2)$, or nucleophilic attack of C(3) on *C(* 1) *via* transitory tricentric bond [6], *via* an oxaallylic cation-like transition state **A.**

It is known that in some Mo(VI) d^{18} -complexes [18] [19], H⁻ and AcO⁻ ions attack intermolecularly at one terminus of the allylic cation ligand. The central Mo(V1) atom in heptamolybdate apparently catalyzes analogous intramolecular nucleophilic processes in **1-7,** leading to the equilibria discussed above. **A** study of this processes with other monosaccharides is in progress⁵).

D-Glyceraldehyde is completely hydrated at 80° in 0.1_M solution [15]; analogous data for D-glucose are not 3) published.

 4 The Mo content in this compound *(ca.* 85%) was found to be much higher than for recently described molybden oxides [17]. Spectroscopic data does not allow structure assignment, while microcrystalline samples obtained as yet were inconvenient for X-ray single-crystal structure determination.

After this manuscript was submitted for publication, a paper appeared [20], in which epimerization of aldoses $5₁$ by **[nickel(II)(tmen),(H20)2Cl,]** complex (tmen = *N,* N,N-trimethylethylenediamine) is described. This result also excludes the 0x0-complex formation of monosaccharides as the substantial driving force for C(2)-epimerization, while a metal-aldose electronic interaction could be expected in this process, as well. The authors announced clarification of the detailed mechanism of this reaction [20].

REFERENCES

- [I] V. Bilik, W. Voelter, E. Bayer, *Angew. Chem.* 1971,83, 967.
- [2] V. Bilik, W. Voelter, E. Bayer, *Liebigs Ann. Chem.* 1972, 759, 189.
- [3] M. Voelter, E. Bayer, *J. Chromatogr.* 1976,126,693.
- [4] V. Bilik, L. PetruS, V. FarkaS. *Chem. Zvesti* 1975,29, 690.
- *[5]* V. Bilik, L. PetruS, M. MiSkova, V. Sutoris, *Chem. Zvesti* 1979,33, **114.**
- [6] M. L. Hayes, N. **J.** Pennings, A. S. Serianni, R. Barker, *J. Am. Chem. Soc.* 1982,104,6764.
- [7] J. Aveston, E. W. Anacher, J. *S.* Johnson, *Inorg. Chem.* 1964,3, 735.
- [8] D.S. Honig, K. Kustin, *Inorg. Chem.* 1972,1I, 65.
- [9] V. Bilik, L. PetruS, J. Zamek, Chem. *Zuesfi* 1978,32, 242.
- [lo] K. Sjobom, B. Hedman, *Acra Chem. Scand.* 1973,27,3673.
- [I I] H.T. Evans, B. **M.** Gatehouse, **P.** Leverett, *J. Chem.* Soc., *Dalton Trans.* 1975, *505.*
- [I21 Y. Ohashi, K. Yanaga, Y. Sasada, T. Yamase, *Bull. Chem. SOC. Jpn.* 1982,55, 1254.
- [13] Ger. Offen. 2.658.223, 1977 *(CA:* 1978, 87, 136 303e).
- [14] U.S. 4.173.514, 1979 *(CA:* 1981, 92, 111 270g).
- [IS] M. Fedorenko, *Collect. Czech. Chem.* Commun. 1984,49, 1167.
- **[I61** J. Konigstein, *Colfect. Czech. Chem.* Commun. 1978,43, 52.
- [17] J.-C. Volta, 0. Bertrand, N. Floquet, *J. Chem. Sor., Chem.* Commun. 1985, 1283.
- [18] N. **A.** Bailey, **W.** G. Kita, J.A. McCleverty, A. **J.** Murray, B. E. Mann, N. W. J. Walker, *J. Chem.* Soc., *Chem. Commun.* 1974,592.
- [I91 S.G. Davies, 'Organotransition Metal Chemistry: Application to Organic Synthesis', Pergamon Press, Oxford-New York, 1982, pp. 37-41.
- (201 T. Tanase, F. Shimizu, S. Yano, **S.** Yoshikawa, *J. Chem.* **Soc.,** *Chem. Commun.* 1986, 1001.